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Background: Meridional Coherence of AMOC Variability
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* Due to the existence of interior pathways, AMOC variations in Regime | propagate
with the slow advection speed
» Subpolar AMOC variations lead subtropical AMOC variations by several years




Background: Meridional Coherence of AMOC Variability and AMOC Fingerprint
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Zhang (2010) shows that a strengthening AMOC at high latitude leads the AMOC fingerprint
thus warming in subpolar gyre (SPG) and cooling in the Gulf Stream (GS) region by several
years. The several year time lead may provide a more useful predictability.
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Recent decadal prediction studies from NCAR, University of Reading, and GFDL all
successfully predicted the decadal warming shift in the mid 90’s in the NA SPG with
initialized ocean state and initializing a strong AMOC at northern high latitudes is
key for successful predictions (Yeager et al. 2012; Robson et al. 2012; Yang et al.,
2013; Msadek et al. 2014) .



» Why does a positive AMOC anomaly at northern high latitudes
induce the warming in SPG and cooling in GS region? Why is
this dipole pattern of AMOC fingerprint confined to north of 34N?

» What is the physical mechanism linking the meridional
coherence of AMOC variability with the evolution of AMOC
fingerprint?

» Why is there an enhanced decadal prediction skill in the North
Atlantic (especially in the SPG) in recent decadal prediction
experiments?



To investigate the mechanism for the evolution of the AMOC fingerprint, we
conducted two sets of experiments using GFDL CM2.1.

Each set of experiments includes:

* An ensemble of 10-member control experiments, each member has a
different initial condition taken from 50 years apart in CM2.1 control simulation.

« An ensemble of 10-member perturbed experiments, each member has the
same initial condition as the corresponding control ensemble member, except
that all ensemble members here are perturbed initially with the positive salinity
anomaly (0.5PSU) in the upper northern North Atlantic and Nordic Sea.

« The anomaly is defined as the ensemble mean difference between the
perturbed and the control experiments.



Description of Experiments
First set (CM2.1):

Anomaly = Perturbed - Control
Second set (CM2.1 with fixing deep subpolar ocean):

Both control experiments and perturbed experiments are with fixed Temperature
and Salinity below 2200m in the NA SPG (50°N - 60°N, 30°W — 50°W, blue box)

Anomaly = Perturbed F — Control F
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Results CM2.1 CM2.1 with Fixing Deep Subpolar Ocean
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* The positive AMOC/MHT anomaly at high latitudes induced by the initial positive
salinity perturbation propagates.



CM2.1 CM2.1 with Fixing Deep Subpolar Ocean
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This distinctive dipole pattern of UOHC is predictable on decadal time scale,
with the southward propagation of AMOC anomaly, but not predictable for the
case with Fixing Deep Subpolar Ocean.



Schematic Diagram of Mechanism
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Southward propagation of a positive AMOC/MHT anomaly with the slow
advection speed north of 34N leads to heat convergence (Warming) in SPG
and divergence (cooling) in GS region.

This slow advection time scale north of 34N assures that the distinctive UOHC
dipole is predictable on decadal timescale.

NO significant warming/cooling south of 34N induced directly by MHT
convergence/divergence due to the fast coastal wave speed.



Results from 1000-yr Control Simulation of GFDL CM2.1
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The analysis of the GFDL CM2.1 1000-yr control simulation exhibits the same

mechanism for the evolution of the AMOC fingerprint, consistent with experiments
and schematic mechanism.



Southward propagation of a positive AMOC/MHT anomaly with the
slow advection speed north of 34N leads to heat convergence
(Warming) in SPG and divergence (cooling) in GS region.

The dipole AMOC fingerprint is confined to north of 34N, due to the
fast coastal wave speed of AMOC/MHT propagation south of 34N.

Initialized subpolar salinity anomaly is important for triggering the
AMOC anomaly at northern high latitudes, but itself cannot directly
lead to predictable temperature signals without the southward
propagation of the AMOC anomaly with the slow advection speed.

This slow advection time scale north of 34N assures that the
distinctive UOHC dipole (AMOC fingerprint) is predictable on
decadal timescale. Our results here provide the physical
mechanism for the enhanced decadal prediction skills in SPG
temperature.



Results: confirmation for slow advection
ESM2M O, (500 years)

(a) Correlation of AMOC with AMOC at 50N (ESM2M)
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* 0, propagation confirms that it takes about 4-5 years of tracer
advection time scale for the AMOC to propagate from subpolar 4
region to subtropical area. '
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Results from 1000-yr control simulation of GFDL CM2.1
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MLD in Labrador Sea
leads AMOC at 50°N for
2-3 years.

It takes 3-4 years for
AMOC anomaly to
propagate from SPG to
subtropical gyre and then
quickly moves southward.

MLD in Labrador Sea
leads warming/cooling for
5-6 years, while AMOC
leads warming/cooling for
about 3 years



