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fore the onset of seasonal hypoxia, such as in the
northern Adriatic, Pomeranian Bay, and the Ger-
man Bight. Paleoindicators and models from the
northern Gulf of Mexico also support this pattern
of occurrence.

Because eutrophication increases the volume
of organic matter that reaches the sediments,
there is a tendency for hypoxia to increase in
time and space. In systems prone to persistent
stratification, oxygen depletion may also per-
sist. This type of persistent hypoxia accounts
for 8% of dead zones, including the Baltic Sea,
the largest dead zone in the world, as well as
many fjordic systems.

Progression of Hypoxia
Coastal hypoxia seems to follow a predictable
pattern of eutrophication first enhancing the dep-
osition of organic matter, which in turn promotes
microbial growth and respiration and produces a
greater demand for oxygen. DO levels become
depleted if the water column stratifies. In the sec-
ond phase, hypoxia occurs transiently, accompa-
nied bymass mortalities of benthic animals.With
time and further buildup of nutrients and organic
matter in the sediments, a third phase is initiated,
and hypoxia becomes seasonal or periodic, char-
acterized by boom-and-bust cycles of animal pop-
ulations. If hypoxia persists for years and organic
matter and nutrients accumulate in the sediments,
a fourth phase is entered, during which the hy-
poxic zone expands, and as the concentration of
DO continues to fall, anoxia is established and
microbially generated H2S is released. This type
of threshold response has been documented in
theGulf ofMexico (17), Chesapeake Bay (8), and
Danish waters (18).

The critical point in the response trajectory of
an ecosystem to eutrophication is the appearance

of severe seasonal hypoxia. Although some level
of nutrient enrichment is a positive force in en-
hancing an ecosystem’s secondary productivity
and, to a point, fishery yields (19), eutrophication
and seasonal hypoxia favor only benthic species
with opportunistic life histories, shorter life spans,
and smaller body sizes (2).

Ecosystem Responses
The effect of seasonal hypoxia on biomass and
annual secondary production is well documented
(2, 9). What is not well understood is how hy-
poxia affects the habitat requirements of dif-
ferent species or the resilience of an ecosystem.
Pelagic species will experience habitat compres-
sion when hypoxia makes deeper, cooler water
unavailable in the summer (15) or overlaps with
nursery habitat (9). For example, the spawning
success of cod in the central Baltic is hindered
by hypoxic water at the halocline (70 to 80 m),
the depth where salinity is high enough to pro-
vide buoyancy for cod eggs (20). Similar habitat
compression occurs when sulphide is generated
in sediments. In this case, as the redox potential
discontinuity layer is compressed close to the
sediment-water interface, deeper-dwelling spe-
cies, including the key bioturbators that control
pore-water chemistry (21), are eliminated. The
presence of Fe3+ and Mn4+ in the sediment may
buffer the system and reduce the formation of
poisonous H2S. Reduced bioturbation associ-
ated with hypoxia also alters sedimentary hab-
itats by disrupting nitrification and denitrification.
Hence, under hypoxic conditions, instead of ni-
trogen being removed as N2 by denitrification,
ammonia and ammonium together with phos-
phorus are the main fluxes out of reduced sedi-
ments (8, 22) and may stimulate further primary
production.

Habitat compression and the loss of fauna as a
result of hypoxia have profound effects on eco-
system energetics and function as organisms
die and are decomposed by microbes. Ecosys-
tem models for the Neuse River estuary (23),
Chesapeake Bay (24), and Kattegat (25) all show
hypoxia-enhanced diversion of energy flows into
microbial pathways to the detriment of higher
trophic levels (Fig. 2). Only under certain circum-
stances will demersal fish predators be able to con-
sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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unavailable in the summer (15) or overlaps with
nursery habitat (9). For example, the spawning
success of cod in the central Baltic is hindered
by hypoxic water at the halocline (70 to 80 m),
the depth where salinity is high enough to pro-
vide buoyancy for cod eggs (20). Similar habitat
compression occurs when sulphide is generated
in sediments. In this case, as the redox potential
discontinuity layer is compressed close to the
sediment-water interface, deeper-dwelling spe-
cies, including the key bioturbators that control
pore-water chemistry (21), are eliminated. The
presence of Fe3+ and Mn4+ in the sediment may
buffer the system and reduce the formation of
poisonous H2S. Reduced bioturbation associ-
ated with hypoxia also alters sedimentary hab-
itats by disrupting nitrification and denitrification.
Hence, under hypoxic conditions, instead of ni-
trogen being removed as N2 by denitrification,
ammonia and ammonium together with phos-
phorus are the main fluxes out of reduced sedi-
ments (8, 22) and may stimulate further primary
production.

Habitat compression and the loss of fauna as a
result of hypoxia have profound effects on eco-
system energetics and function as organisms
die and are decomposed by microbes. Ecosys-
tem models for the Neuse River estuary (23),
Chesapeake Bay (24), and Kattegat (25) all show
hypoxia-enhanced diversion of energy flows into
microbial pathways to the detriment of higher
trophic levels (Fig. 2). Only under certain circum-
stances will demersal fish predators be able to con-
sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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northern Gulf of Mexico also support this pattern
of occurrence.
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stratification, oxygen depletion may also per-
sist. This type of persistent hypoxia accounts
for 8% of dead zones, including the Baltic Sea,
the largest dead zone in the world, as well as
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a fourth phase is entered, during which the hy-
poxic zone expands, and as the concentration of
DO continues to fall, anoxia is established and
microbially generated H2S is released. This type
of threshold response has been documented in
theGulf ofMexico (17), Chesapeake Bay (8), and
Danish waters (18).

The critical point in the response trajectory of
an ecosystem to eutrophication is the appearance

of severe seasonal hypoxia. Although some level
of nutrient enrichment is a positive force in en-
hancing an ecosystem’s secondary productivity
and, to a point, fishery yields (19), eutrophication
and seasonal hypoxia favor only benthic species
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sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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fore the onset of seasonal hypoxia, such as in the
northern Adriatic, Pomeranian Bay, and the Ger-
man Bight. Paleoindicators and models from the
northern Gulf of Mexico also support this pattern
of occurrence.

Because eutrophication increases the volume
of organic matter that reaches the sediments,
there is a tendency for hypoxia to increase in
time and space. In systems prone to persistent
stratification, oxygen depletion may also per-
sist. This type of persistent hypoxia accounts
for 8% of dead zones, including the Baltic Sea,
the largest dead zone in the world, as well as
many fjordic systems.

Progression of Hypoxia
Coastal hypoxia seems to follow a predictable
pattern of eutrophication first enhancing the dep-
osition of organic matter, which in turn promotes
microbial growth and respiration and produces a
greater demand for oxygen. DO levels become
depleted if the water column stratifies. In the sec-
ond phase, hypoxia occurs transiently, accompa-
nied bymass mortalities of benthic animals.With
time and further buildup of nutrients and organic
matter in the sediments, a third phase is initiated,
and hypoxia becomes seasonal or periodic, char-
acterized by boom-and-bust cycles of animal pop-
ulations. If hypoxia persists for years and organic
matter and nutrients accumulate in the sediments,
a fourth phase is entered, during which the hy-
poxic zone expands, and as the concentration of
DO continues to fall, anoxia is established and
microbially generated H2S is released. This type
of threshold response has been documented in
theGulf ofMexico (17), Chesapeake Bay (8), and
Danish waters (18).

The critical point in the response trajectory of
an ecosystem to eutrophication is the appearance

of severe seasonal hypoxia. Although some level
of nutrient enrichment is a positive force in en-
hancing an ecosystem’s secondary productivity
and, to a point, fishery yields (19), eutrophication
and seasonal hypoxia favor only benthic species
with opportunistic life histories, shorter life spans,
and smaller body sizes (2).

Ecosystem Responses
The effect of seasonal hypoxia on biomass and
annual secondary production is well documented
(2, 9). What is not well understood is how hy-
poxia affects the habitat requirements of dif-
ferent species or the resilience of an ecosystem.
Pelagic species will experience habitat compres-
sion when hypoxia makes deeper, cooler water
unavailable in the summer (15) or overlaps with
nursery habitat (9). For example, the spawning
success of cod in the central Baltic is hindered
by hypoxic water at the halocline (70 to 80 m),
the depth where salinity is high enough to pro-
vide buoyancy for cod eggs (20). Similar habitat
compression occurs when sulphide is generated
in sediments. In this case, as the redox potential
discontinuity layer is compressed close to the
sediment-water interface, deeper-dwelling spe-
cies, including the key bioturbators that control
pore-water chemistry (21), are eliminated. The
presence of Fe3+ and Mn4+ in the sediment may
buffer the system and reduce the formation of
poisonous H2S. Reduced bioturbation associ-
ated with hypoxia also alters sedimentary hab-
itats by disrupting nitrification and denitrification.
Hence, under hypoxic conditions, instead of ni-
trogen being removed as N2 by denitrification,
ammonia and ammonium together with phos-
phorus are the main fluxes out of reduced sedi-
ments (8, 22) and may stimulate further primary
production.

Habitat compression and the loss of fauna as a
result of hypoxia have profound effects on eco-
system energetics and function as organisms
die and are decomposed by microbes. Ecosys-
tem models for the Neuse River estuary (23),
Chesapeake Bay (24), and Kattegat (25) all show
hypoxia-enhanced diversion of energy flows into
microbial pathways to the detriment of higher
trophic levels (Fig. 2). Only under certain circum-
stances will demersal fish predators be able to con-
sume stressed benthic prey, because their tolerance
to low oxygen concentration tends to be less (~3 to
4ml ofO2/liter) than that of the benthic fauna. Thus,
it is only within a narrow range of conditions that
hypoxia facilitates upward trophic transfer. As the
benthos die, microbial pathways quickly dominate
energy flows. Ecologically important places, such
as nursery and recruitment areas, suffer most from
energy diversion intomicrobial pathways because
hypoxia tends to occur in summer, when growth
and predator energy demands are high.

Missing Biomass
Areas within ecosystems exposed to long periods
of hypoxia have low annual secondary produc-
tion and typically no benthic fauna. Estimates of
the missing biomass in Baltic dead zones that are
now persistently hypoxic are ~264,000metric tons
of carbon (MTC) annually (7) and represent ~30%
of total Baltic secondary production (26). Simi-
larly, estimates for the Chesapeake Bay indicate
that ~10,000 MT C is lost because of hypoxia
each year, representing ~5% of the Bay’s total
secondary production (27). If we estimate that
~40% of benthic energy should be passed up the
food chain in the Baltic (28) and 60% in the
Chesapeake Bay (26), when hypoxic conditions
prevail, 106,000 MT C of potential food energy
for fisheries is lost in the Baltic and 6,000MTC in

Hypoxic system
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Fig. 1. Global distribution of 400-plus systems that have scientifically
reported accounts of being eutrophication-associated dead zones. Their
distribution matches the global human footprint [the normalized human

influence is expressed as a percent (41)] in the Northern Hemisphere. For
the Southern Hemisphere, the occurrence of dead zones is only recently
being reported. Details on each system are in tables S1 and S2.
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Oregon Shelf, observations by Peterson et al. 2013
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The oxygen records at station P4 and within the
CalCOFI region are both available back to the mid-
1980s. To compare with results at these locations, we
make use of a few data points from the 1980s available in
the archives at NH-35. We estimate a change from 1980
to 2009 at 150 m of 21.3 6 0.7 mmol kg21 yr21, about
twice the result using the full 1960–2009 period (Fig. 4a,
thin line). This agrees well with the slope station P4
result (21.2 mmol kg21 yr21; Whitney et al. 2007) and
the CalCOFI one (21.0 mmol kg21 yr21; Bograd et al.
2008; McClatchie et al. 2010). It is not clear if this result
arises from decadal variability or perhaps represents an
acceleration of the long-term decline.

The time series of oxygen at su 5 26.8 at station P has
been correlated with a similar time series in the Oyashio
region (Ono et al. 2001), with a lag of about 7 yr, consistent
with what would be expected for west to east transport
in the subpolar gyre system (Whitney et al. 2007). The
decadal variability in station P oxygen is not correlated
with the Pacific decadal oscillation (Mecking et al. 2008) or
with the North Pacific Gyre Oscillation (Di Lorenzo et al.
2008) [our NH-line time series (Fig. 4) has insufficient data
to address decadal variability]. In the subpolar gyre, a ma-
jor factor in oxygen decline may be a reduction in out-
cropping of density in the vicinity of su 5 26.6 due to
increased stratification in the northwest corner of the
Pacific (Emerson et al. 2004; Deutsch et al. 2006). Given
the similarity of the declines at our offshore station and
station P, as well as the identical locations of the maxima
at su 5 26.5, we infer a strong subpolar influence at the
NH line. Note that an absolute change in oxygen at
station P, as it travels east along su 5 26.5, will appear
smaller at the NH line, because in general subarctic
water is warming and losing oxygen along this isopycnal

(Whitney et al. 2007). This is what we observe: NH-85
has a decrease of 0.4 mmol kg21 yr21, smaller than the
station P value of 0.7 mmol kg21 yr21. Moreover, the
relative changes at each location are nearly the same:

TABLE 1. Rates of change (mmol kg21 yr21) on density surfaces
based on summertime differences between the two time periods
1960–71 and 1998–2009. Only significant rates (95%) are shown.
The largest decrease at each station is in bold.

su NH-85 NH-65 NH-45 NH-35 NH-25 NH-15 NH-5

26.0 — 20.30 20.43 20.45 20.47 20.45 20.61
26.1 20.26 20.30 20.49 20.53 20.49 20.51 20.67
26.2 20.28 20.29 20.57 20.57 20.51 20.57 20.79
26.3 20.32 20.26 20.65 20.64 20.54 20.52 20.86
26.4 20.34 20.24 20.74 20.69 20.56 20.73 20.78
26.5 20.37 20.32 20.72 20.77 20.52 — 20.79
26.6 20.36 20.25 20.57 20.56 20.42 — —
26.7 20.27 20.31 20.40 20.41 20.34 — —
26.8 20.31 20.24 20.30 20.32 — — —
26.9 20.28 20.28 20.22 — — — —
27.0 20.23 20.26 20.17 — — — —
27.1 20.15 20.21 20.31 — — — —
27.2 20.18 20.21 — — — — —
27.3 20.14 20.17 — — — — —

FIG. 4. Time series of dissolved oxygen at (a) the upper slope
station NH-35 at 150-m depth and (b) the shelf station NH-5 at
50-m depth. Linear regression lines with 95% confidence intervals
are shown. The thin line in (a) only uses data after 1980, for the
purpose of comparing with some other studies. (c) Average NH-
line shoaling of oxygen isopleths over time (1960–2009).
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PCA of CalCOFI ichthyoplankton data  
(Koslow et al 2011) 

86 taxa consistently sampled, 1951-2008 
over 6 core CalCOFI transects 
Abundance: proxy for  adult spawning 
stock biomass 
PC 1 (20.5% var explained):  

24/27 taxa with loadings > 0.5 
mesopelagic from 8 families: 

Myctophidae, Gonostomatidae, 
Sternoptychidae, Stomiidae, 
Phosichthyidae, Scopelarchidae, 
Argentinidae, and Microstomatidae 

Includes vertical migrators & non-
migrators, plankton feeders & 
predators 
 
O2: declined 20% since 1980s 
Mesopelagics: factor of 2.7 difference 
1951-60 & 1999-2008 vs 1966-99 

 

PC 1     O2  
(200-400 m) PDO MEI NPGO SST Upwelling  

      R  
0.75* 0.56** 0.47* -0.23 0.45? -0.25 

Declining deepwater O2 predicted in global climate models, now observed in global OMZs.  
Mesopelagics: dominant plankton consumers, prey of dolphins, squid, predatory fishes. 



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen
CalCOFI Oxygen
ECMWF ORA3 Oxygen Proxy



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

ECMWF ORA3 Oxygen Proxy

good

California Oxygen (Deutsch et al., 2011)



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

1950 1960 1970 1980 1990 2000 2010
−0.1

−0.05

0

0.05

0.1

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

ECMWF ORA3 Oxygen Proxy

California Oxygen (Deutsch et al., 2011)

SPICE PC1



1950 1960 1970 1980 1990 2000 2010
−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

SODA offshore Oxygen Proxy

California Oxygen (Deutsch et al., 2011)

SPICE PC1



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

SODA inshore Oxygen Proxy

California Oxygen (Deutsch et al., 2011)

SPICE PC1



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

SODA inshore Oxygen Proxy

California Oxygen (Deutsch et al., 2011)

SPICE PC1



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

ECMWF ORA3 Oxygen Proxy

California Oxygen (Deutsch et al., 2011)



1950 1960 1970 1980 1990 2000 2010
−3

−2

−1

0

1

2

3

Newport Oxygen (Peterson et al., 2013)

CalCOFI Oxygen (Koslow et al., 2011)

ECMWF ORA3 Oxygen Proxy

California Oxygen (Deutsch et al., 2011)



1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2

3

Station P Oxygen (Whitney et al., 2011)

ECMWF ORA3 Oxygen Proxy (Station P)



1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2

3

Station P Oxygen (Whitney et al., 2011)

SODA Oxygen Proxy (Station P)



1950 1960 1970 1980 1990 2000 2010
−4

−3

−2

−1

0

1

2



Correlation with 
CCSI index


