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Balance the gIObaI (momentum, enthalpy, freshwater) bUdget !

\ - ggu%yuw'j"“““




Goal: use closed heat budgets to understand causes heat anomalies

Term-by-term budget analysis of origin of heat content
anomalies through time:
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Example: decomposition of advective term:
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Goal: use closed heat budgets to understand causes heat anomalies

Another example:

decomposition of Ekman and geostrophic components:
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Need adequate
model output

Basic principles for
sampling model simulation

Maintain high degree of
integrity of output

E.g..

Products of time-dependent
fields should be time averaged
as a product, using all model
time steps to build the average

Griffies et al. (2009)
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Combining the knowledge reservoirs: “data assimilation”, “reanalysis”
The estimation (interpolation) vs. forecasting (extrapolation) problem

e Atmosphere

— Relatively abundant data sampling of the 3-dim. atmosphere

— Most DA applications target optimal forecasting

=» find initial conditions which produce best possible forecast;

=>» dynamical consistency or property conservation *NOT* required

e (Ocean

— Very sparse data sampling of the 3-dim. ocean

— Understanding past & present state of the ocean is a major issue all by
itself, the forecasting dependent upon it “iumps” are unphysical

=» use observations in an
optimal way to extract
max. information

=>» dynamic consistency &
property conservation
*ESSENTIAL* for climate
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Dynamical consistency: why does it matter:
(Large) imbalances in air-sea fluxes from atmospheric re-analysis products

assimilation increment

change over 6 hours

| Standard deviation of
»" NCEP surface pressure
shows that, on average,
24% of its mass
| change is physically
unaccounted for.

net fresh water imbalance net heat flux imbalance
[mm/year] [W/m?]

reanaIyS|s prOdUCt “+” for ocean volume increase “+” for ocean cooling

_ ocean-only global ocean-only global
NCEP/NCAR-1 1992-2010 159 62 -0.7 2.2
NCEP/DOE-II (1992-2004) 740 - -10 -
ERA-Interim (1992-2010) 199 53 -8.5 -6.4
JRA-25 (1992-2009) 202 70 15.3 10.1
CORE-II (1992-2007) 143 58




Problem statement & definitions

The state & parameter estimation problem statement
(v
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differs from the data assimilation problem, as stated in NWP
(a.k.a. analysis or re-analysis):
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Problem statement & definitions

» Prior or background state estimate X(tnow, —)
obtained by running (in forecast mode) model over time 7

» New information/observations y(tpo ) arrive at timt tnon

E(tnow) X(tnow) + n(tnow) = )/(tnow)a

E(thow) Observation matrix,
n(thow ) observation/representation error (“noise”)

Obtain best linear unbiased estimator (BLUE), called the analysis
(e.g., Kalman Filter, Optimal Interpolation):

%(tnow) = K(trow,—) +PPHT [HPPHT +R] (y(tnow)—Ex(tnOW, —))

Patrick Heimbach Intro to Adjoints and AD




Problem statement & definitions

P S
%(tnow) = %(tnow: —) + PPHT [HPPHT +R] ™ (y(tnow) — E X(trows —))

= X(tpow, —) + K- (y(tnow) — Ex(tnow,—))

» K: gain matrix

» V(thow) = Y(thow) — E X(thow, —): innovation vector or
residuals: new information contained in the observations

Interpretation:
Gain matrix K weighs the innovation vector y(tpow)
according to observational & prior uncertainties

to produce the analysis X(tnow)

Patrick Heimbach Intro to Adjoints and AD




Problem statement & definitions

For example (limiting cases):

@ large obs. error — small weights — X(tpow) ~ X(tnow, —)

@ small obs. error — large weights — X(thow) 7# X(tnow, —)

S
Key point to understand: The analysis step

X(thow, —) —> X(tnow) = Xx(thow,—) + K- (y— Ex>

violates the conservation equations for tracers and momentum!

Patrick Heimbach Intro to Adjoints and AD



Challenges (e.g. summarized in several OceanObs’ 09 whitepapers)

0
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Convergence of estimates
with increasing number of
observations?

If not, why not?

Consequences for attempt
to understand circulation
changes...

Narrowing of transport
uncertainties to “useful”
numbers remains hard



Recent(!) changes in the atmosphere and ocean observing systems

An important issue is
that changes in the
global observing system
aren’t just a thing of the
past (pre-1980s), but
remain relevant today.

: Number of Temperature Profiles per Month (1980-Presert)
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Lessons from atmospheric reanalysis:
“Can climate trends be calculated from reanalysis data?”

e Large warming trend in ERA40 an artifact of large changes in

observational coverage at the end of the 1970s

e Large uncertainty in the calculation of trends from present reanalyses
e Present observing system was set up to support weather forecasting, not

directly suitable for climate monitoring

e Systematic errors in the assimilating models add complications

e Limited resources currently devoted to address these problems!!

Why should the ocean estimation problem be any different?

ERA 40: Total kinetic energy for 1958 - 2001
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Spurious trends in MERRA precipitation

50°S-60°S PRECIPITATION: MERRA minus ERA-Interim
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2-month running average difference between forecast daily precipitation
from MERRA and from ERA-Interim, spatially averaged over
the 50°S-60°S latitude band.



Dynamical consistency: why does it matter:
Driving offline tracer simulations (e.g. CO,)

Filtered estimate of CO, flux
during 97-98 EI Nifio (mol/m?/yr)

El Nino 1997 -1998 Kalman unsmoothed

Observed estimate of CO, flux
during 92-93 EI Nifio
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1607 1T0°F LS0° 1705W 160° 1507 140° 130° 120° 110" Loo® 'm"l”

)
A

~— VRS

S nBEME LT
poy Aef 28
it

160 180 200 220 240 260
Long

Smoothed estimate of CO, flux

El Nino 1997-1998 Kalman smoothed wind

10

Lat
o

-5

60 53 S0 4.5 4.0 33 30 25 20 1210 RS 0O 0S8
- 10
160 180 200 220 2490 260

Long

CO, flux (mol m™ yr™)
McKinley, 2002 Feely et al., 1999

apmne

apmne



Conclusions

e sequential/filtering methods solve not the same problem as
estimation/smoother methods

— break dynamical consistency
— tracer conservation no longer fulfilled
— NWP is not the same thing as “reconstruction”

e for climate science applications need to account for and
understand the analysis increments

e if needed, at a minimum make analysis step / innovation
vector part of the basic diagnostics and budget calculations

— also has value to diagnose systematic model deficiencies



