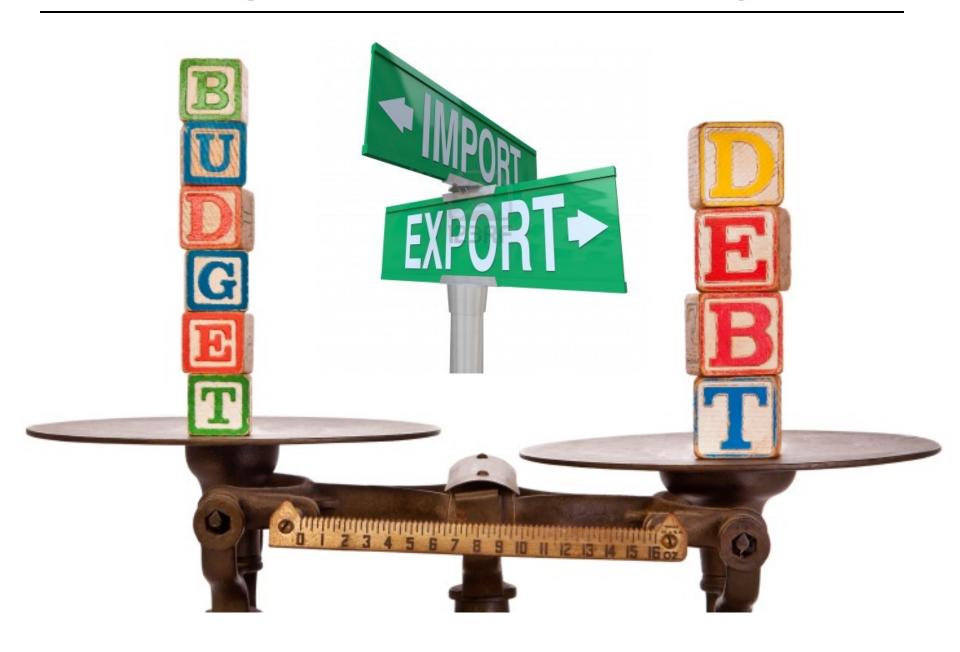
Innovation, increments, and residuals: Definitions and examples

Patrick Heimbach

MIT, EAPS, Cambridge, MA


Outline

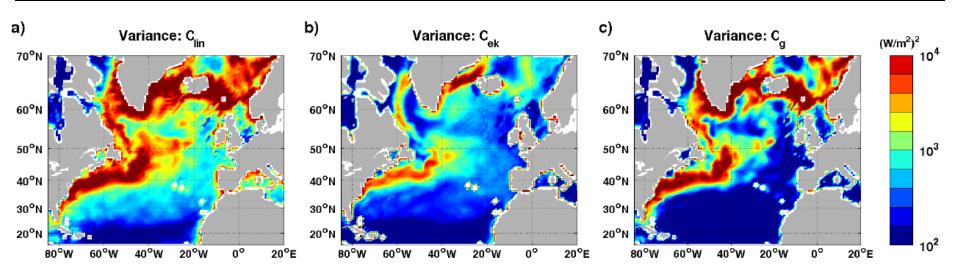
1. Why should we / do we care?

2. How does "(re-)analysis" really work?

3. Conclusions

Balance the global (momentum, enthalpy, freshwater) budget!

Term-by-term budget analysis of origin of heat content anomalies through time:


$$\underbrace{\int_{0}^{t} \frac{H_{t}}{\rho_{o}C_{p}V} dt}_{\equiv (T-T_{o})} = \underbrace{\int_{0}^{t} \frac{C_{adv}}{\rho_{o}C_{p}V} dt}_{\equiv T_{adv}} + \underbrace{\int_{0}^{t} \frac{C_{diff}}{\rho_{o}C_{p}V} dt}_{\equiv T_{diff}} + \underbrace{\int_{0}^{t} \frac{Q_{net}}{\rho_{o}C_{p}V} dt}_{\equiv T_{Q}}$$

Example: decomposition of advective term:

$$C_{adv} = -\rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\overline{\boldsymbol{u}} \overline{T} + \overline{\boldsymbol{u}}^* \overline{T}) \ dz = \underbrace{-\rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\overline{\boldsymbol{u}} \overline{T}) \ dz}_{\equiv C_{lin}} \underbrace{-\rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\overline{\boldsymbol{u}}' \overline{T}' + \overline{\boldsymbol{u}}^* \overline{T}) \ dz}_{\equiv C_{bol}},$$

Another example: decomposition of Ekman and geostrophic components:

$$C_{ek}(\mathbf{u_{ek}}, w_{ek}, \theta) = C_{ek}(\overline{\mathbf{u}_{ek}}, \overline{w_{ek}}, \overline{\theta}) + \underbrace{C_{ek}(\mathbf{u_{ek}}', w_{ek}', \overline{\theta})}_{C_{ek}^v} + \underbrace{C_{ek}(\overline{\mathbf{u}_{ek}}, \overline{w_{ek}}, \theta')}_{C_{ek}^v} + \underbrace{C_{ek}(\mathbf{u'_{ek}}, w_{ek}', \theta')}_{C_{ek}^v} + \underbrace{C_{ek}(\mathbf{u'_{ek}}, w_{ek}', \theta')}_{C_{ek}^v} + \underbrace{C_{ek}(\overline{\mathbf{u}_{ek}}, \overline{w_{ek}}, \theta')}_{C_{ek}^v} + \underbrace{C_{ek}(\overline{\mathbf{u}_{ek}}, \overline{w_{ek}}, \theta')}_{C_{ek}^v} + \underbrace{C_{g}(\overline{\mathbf{u}_{g}}, \overline{w_{g}}, \theta')}_{C_{g}^v} + \underbrace{C_{g}(\overline{\mathbf{u}_{g}}, \overline{w_{g}}, \theta')}_{C_$$

Buckley et al. (subm.)

Basic principles for sampling model simulation

Maintain high degree of integrity of output

E.g.:

Products of time-dependent fields should be time averaged as a product, using all model time steps to build the average

WORLD CLIMATE RESEARCH PROGRAMME

Sampling Physical Ocean Field in WCRP CMIP5 Simulations: CLIVAR Working Group on Ocean Model Development (WGOMD) Committee on CMIP5 Ocean Model Output

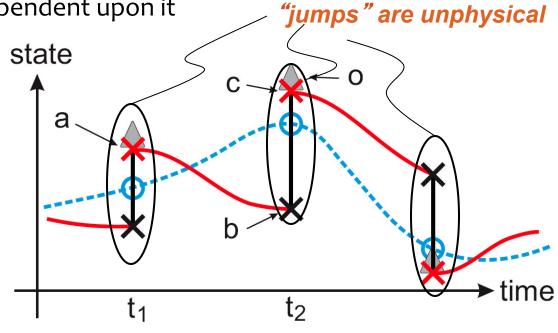
February 2009

Griffies et al. (2009)

ICPO Publication Series No.137

WCRP Informal Report No. 3/2009

Combining the knowledge reservoirs: "data assimilation", "reanalysis"

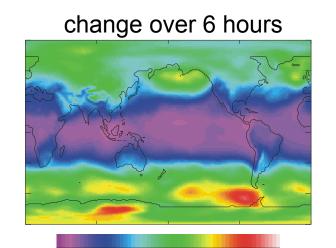

The estimation (interpolation) vs. forecasting (extrapolation) problem

Atmosphere

- Relatively abundant data sampling of the 3-dim. atmosphere
- Most DA applications target optimal forecasting
- → find initial conditions which produce best possible forecast;
- → dynamical consistency or property conservation *NOT* required

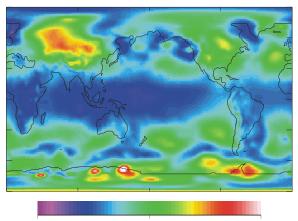
Ocean

- Very sparse data sampling of the 3-dim. ocean
- Understanding past & present state of the ocean is a major issue all by itself, the forecasting dependent upon it
- → use observations in an optimal way to extract max. information
- dynamic consistency & property conservation*ESSENTIAL* for climate



Dynamical consistency: why does it matter:

20


[mbar]

(Large) imbalances in air-sea fluxes from atmospheric re-analysis products

10

assimilation increment

Standard deviation of NCEP surface pressure shows that, on average, 24% of its mass change is physically unaccounted for.

reanalysis product	net fresh water imbalance [mm/year] "+" for ocean volume increase		net heat flux imbalance [W/m²] "+" for ocean cooling	
	ocean-only	global	ocean-only	global
NCEP/NCAR-I 1992-2010	159	62	-0.7	-2.2
NCEP/DOE-II (1992-2004)	740	-	-10	-
ERA-Interim (1992-2010)	199	53	-8.5	-6.4
JRA-25 (1992-2009)	202	70	15.3	10.1
CORE-II (1992-2007)	143	58		

The state & parameter estimation problem statement

$$J = \sum_{m=0}^{M} \left[y(t) - \mathbf{E} \widetilde{x}(t) \right]^T \mathbf{R}^{-1}(t) \left[y(t) - \mathbf{E} \widetilde{x}(t) \right]$$
 $+ \sum_{m=0}^{M-1} \widetilde{u}(t)^T \mathbf{Q}^{-1} \widetilde{u}(t), \qquad t = m \Delta t$

differs from the data assimilation problem, as stated in NWP (a.k.a. analysis or re-analysis):

$$J_{1} = \left[\tilde{x}(t_{now}) - \tilde{x}(t_{now}, -)\right]^{T} \mathbf{P}^{-1}(t_{now}, -)\left[\tilde{x}(t_{now}) - \tilde{x}(t_{now}, -)\right] + \left[y(t_{now}) - \mathbf{E}(t_{now})x(t_{now})\right]^{T} \mathbf{R}^{-1}(t_{now})\left[y(t_{now}) - \mathbf{E}(t_{now})x(t_{now})\right]$$

- Prior or background state estimate $\tilde{x}(t_{now}, -)$ obtained by running (in forecast mode) model over time τ
- New information/observations $y(t_{now})$ arrive at timt t_{now}

$$\mathbf{E}(t_{now}) x(t_{now}) + n(t_{now}) = y(t_{now}),$$

 $E(t_{now})$ observation matrix, $n(t_{now})$ observation/representation error ("noise")

Obtain best linear unbiased estimator (BLUE), called **the analysis** (e.g., Kalman Filter, Optimal Interpolation):

$$\tilde{x}(t_{now}) = \tilde{x}(t_{now}, -) + \mathbf{P}^b \mathbf{H}^T \left[\mathbf{H} \mathbf{P}^b \mathbf{H}^T + \mathbf{R} \right]^{-1} \left(y(t_{now}) - \mathbf{E} x(t_{now}, -) \right)$$

$$\tilde{x}(t_{now}) = \tilde{x}(t_{now}, -) + \mathbf{P}^b \mathbf{H}^T \left[\mathbf{H} \mathbf{P}^b \mathbf{H}^T + \mathbf{R} \right]^{-1} \left(y(t_{now}) - \mathbf{E} x(t_{now}, -) \right)$$

$$= \tilde{x}(t_{now}, -) + \mathbf{K} \cdot \left(y(t_{now}) - \mathbf{E} x(t_{now}, -) \right)$$

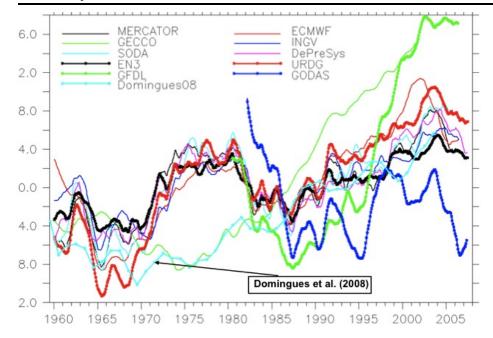
- ► K: gain matrix
- $\tilde{y}(t_{now}) = y(t_{now}) \mathbf{E}x(t_{now}, -)$: innovation vector or residuals: new information contained in the observations

Interpretation:

Gain matrix **K** weighs the innovation vector $\tilde{y}(t_{now})$ according to observational & prior uncertainties to produce the analysis $\tilde{x}(t_{now})$

For example (limiting cases):

- large obs. error \longrightarrow small weights $\longrightarrow \tilde{x}(t_{now}) \approx x(t_{now}, -)$
- small obs. error \longrightarrow large weights $\longrightarrow \tilde{x}(t_{now}) \neq x(t_{now}, -)$


Key point to understand: The analysis step

$$x(t_{now},-) \longrightarrow x(t_{now}) = x(t_{now},-) + \mathbf{K} \cdot (y - \mathbf{E}x)$$

violates the conservation equations for tracers and momentum!

Challenges (e.g. summarized in several OceanObs' 09 whitepapers)

Comparison of different multi-decadal "re-analyses" (CLIVAR/GSOP)

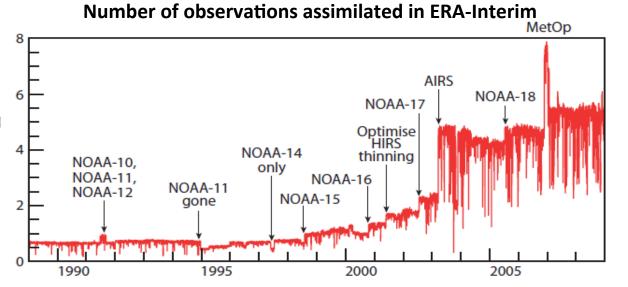
Number of Temperature Profiles per Month (1980-Present)

500

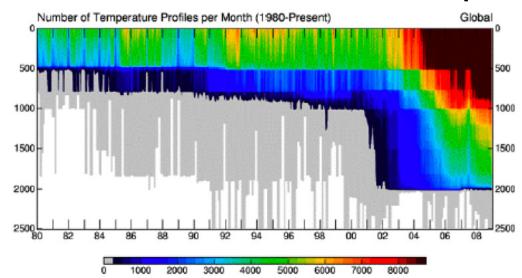
1000

1500

2000


2500

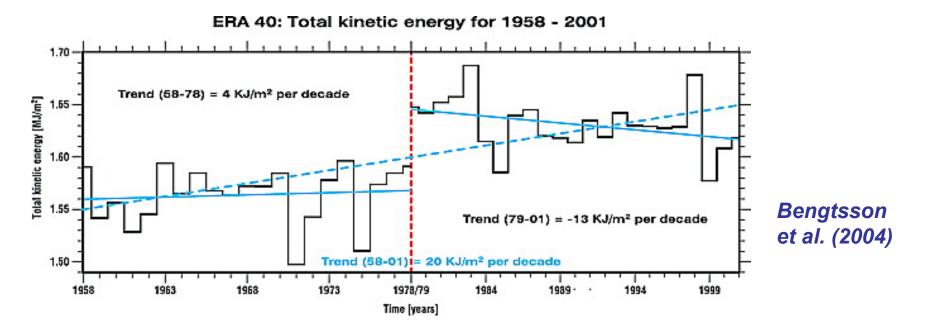
80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 2500


- Convergence of estimates with increasing number of observations?
- If not, why not?
- Consequences for attempt to understand circulation changes...
- Narrowing of transport uncertainties to "useful" numbers remains hard

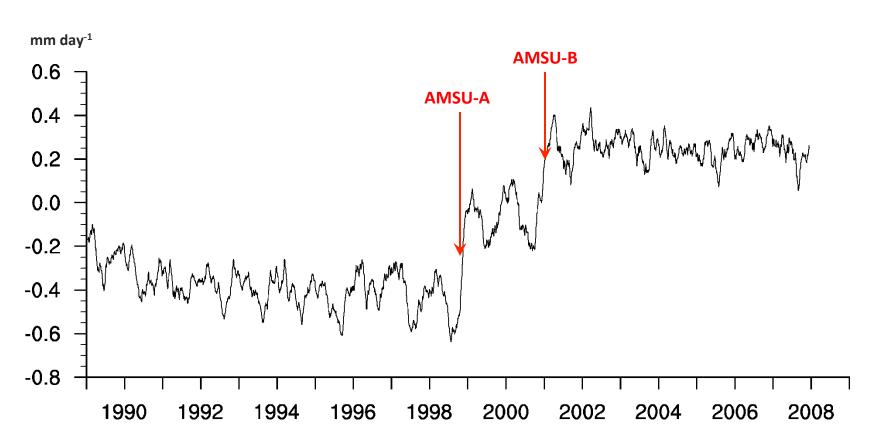
Recent(!) changes in the atmosphere and ocean observing systems

An important issue is that changes in the global observing system aren't just a thing of the past (pre-1980s), but remain relevant today.

[Dee et al., 2009, ECMWF Newsletter (119)]



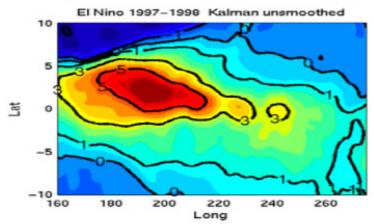
Lessons from atmospheric reanalysis:


"Can climate trends be calculated from reanalysis data?"

- Large warming trend in ERA40 an artifact of large changes in observational coverage at the end of the 1970s
- Large uncertainty in the calculation of trends from present reanalyses
- Present observing system was set up to support weather forecasting, not directly suitable for climate monitoring
- Systematic errors in the assimilating models add complications
- Limited resources currently devoted to address these problems!!

Why should the ocean estimation problem be any different?

50°S-60°S PRECIPITATION: MERRA minus ERA-Interim

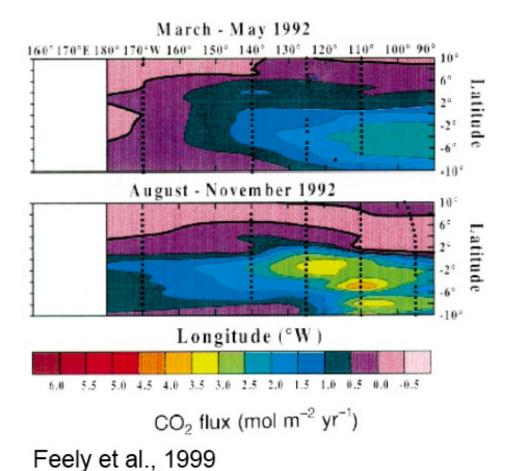


2-month running average difference between forecast daily precipitation from MERRA and from ERA-Interim, spatially averaged over the 50°S-60°S latitude band.

Dynamical consistency: why does it matter:

Driving offline tracer simulations (e.g. CO₂)

Filtered estimate of CO₂ flux during 97-98 El Niño (mol/m²/yr)



Smoothed estimate of CO₂ flux

McKinley, 2002

Observed estimate of CO₂ flux during 92-93 El Niño

Conclusions

- sequential/filtering methods solve not the same problem as estimation/smoother methods
 - break dynamical consistency
 - tracer conservation no longer fulfilled
 - NWP is not the same thing as "reconstruction"
- for climate science applications need to account for and understand the analysis increments
- if needed, at a minimum make analysis step / innovation
 vector part of the basic diagnostics and budget calculations
 - also has value to diagnose systematic model deficiencies