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1. Why should we [ do we care?

2. Tools & challenges



Why gradients/adjoints are good for you?
Data assimilation [ state & parameter estimation
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Why gradients/adjoints are good for you?

Comprehensive sensitivity studies

» Finite difference approach:

e Take “guessed” anomaly (e.g.
SST) and determine its impact
on model output (ice export)

e Perturb each input element
(SST(z, 5)) to determine its im-
pact on output (ice export).

Impact of one input on all outputs
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forward or finite difference approach

» Reverse/adjoint approach:

e Calculates “full” sensitivity field

O ice export
0 SST(z,y,t)

e Approach: Let
J = export, i = SST(i, j)

- O ice export
R vu,g7(“) - 6SST(x?y,t)

Sensitivity of one output to all inputs
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Why gradients/adjoints are good for you?
Non-normal transient amplification & predictability

» Consider stable linear system
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If M is non-normal, M - M™ # M™ . M, non-orthogonal eigenvectors:
7(t) = a1 i M + ag iz e?*

If decay timescales very different, i.e. \; << A2 < 0, then

e a1 1 M decays quickly,removing partial cancelation of EV’s
e causing transient amplification for ¢t ~ 1

e leaving mostly #(t) ~ ag b e™?* — 0fort — oc.
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Why gradients/adjoints are good for you?
Formal uncertainty characterization & quantification

» Consider linear approx. of cost function
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of Hessian H of 7 () at minimum: ' r = -
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» Eigenvalues of H: principal curvatures

e ;. principal curvatures
—1\-
largestEV conditioning number e det(H~1): Gauss curvature
smallest EV e trace (H—1): mean curvature




Some algebra
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e U = M(u) nonlinear model
o M, MT tangent linear ('L M) / adjoint (ADM)

o Ju, 0*u perturbation / dual (or sensitivity)
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How to get an adjoint model?

hand-written adjoint automatic differentiation



Adjoint code generation via Automatic / Algorithmic Differentiation (AD)
applied to the MITgcm code (100,000+ lines of code)

» Nonlinear model code » Adjoint model code
7= Mr(Mpa-1(...... (Mo (@) 6" d@ = Mg -Mi -...... :

» Automatic differentiation:

Marotzke et al.  each line of code is elementary operator M y

JGR 1999 — rules for differentiating elementary operations ;gf;;;;gmn;“c&»;;:;momi |
Stammer et al.  — Yield elementary Jacobians M Christian H. Bischof - H. Martin Biicker
JGR 2002 — composition of M ’s according to chain rule Z”(;Wla"d'uwe R
. — transpose M gives adjoint vanceg In
He’mbaCh et al. Automatlc
FGCS, 2005 yield full tangent linear / adjoint model . ..
’ Differentiation
» Source-to-source AD tools: N
TAF (Giering & Kaminski, 1998), commercial M e
OpenAD (Utke et al., 2008), open-source e
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Implementation options (L. Harscoet & K. Narayanan, pers. comm.)

Implementation-wise, several strategies may be available

Strategies differ in:

efficiency of derivative code

suitability for the sort of derivatives required
ease of use

tool development investment

dependence on the application language

Options:

Source-to-source transformation vs. operator overloading
Diff. variables association-by-name vs. association-by-address
Reverse retrieval by storage or by re-computation



Strengths & weaknesses (L. Harscoet & K. Narayanan, pers. comm.)

e operator overloading:
+ few restrictions, flexibility, ease of coding language

- adjoint tape size; interpreted => slower*3; overhead,
source code preparation

e source-to-source transformation:

+ smaller adjoint tape; global analyses; compiler
optimizations => better efficiency / performance

- lagging behind language features; development cost

Other aspects:
— assoc. by address: maintaining connection, locality
— assoc. by type: readability



Available AD tools:
http://autodiff.org

e Source-to-source transformation:
— TAF/TAC++ (Germany, commercial) - MITgcm (ocean & ice)
— OpenAD/F & ADIC (Argonne NL, USA) — MITgcm (ocean & ice)
— Tapenade (INRIA, France)

e Operator overloading:
— ADOL-C (Argonne NL, USA) - Ice Sheet System Model (ISSM)
— NAGware-95 (RWTH, Germany)

Shameless self-promotion:
— MITgcm/ECCO framework has been flagship application for AD
— can now be differentiated using both TAF and OpenAD
— both ocean GCM and ice sheet model differentiated

Significant national & international (e.g., UK, Germany, Norway, ...)
interest in accessibility to open-source AD tools



OpenAD: an open-source algorithmic differentiation tool
http://www.mcs.anl.gov/OpenAD
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= modularity

Angel v = flexibility
boost xaifBooster = use of open-source components
xerces (AD source transformation) = new algorithmic approaches:

Tool design emphases

* XML-based language-

Immediate needs: independent transformation

e basic block preaccumulation
Tool support at agency level e other optimal elimination methods
for climate applications (esp. DOE) e control flow & call graph reversal

e hierarchical checkpointing

(started with NSF-CMG & NASA support)



Conclusion

e Gradient information are powerful ingredients in climate
research (DA, sensitivity, predictability, UQ, ...)

e can be efficiently obtained via adjoint model
e obtaining adjoint of full-fledged model is challenging
e algorithmic differentiation (AD) has proven feasible
— is generating increasing interest in modeling community
o think of using AD tool like driving a Formula 1 car
— requires skillful driver
— highly tuned: tool improves with each new application
— requires AD tool support
e strong desire for better access to (open-source) AD tools

Specific recommendation: increase OpenAD tool support at
agency level for climate applications (esp. DOE)



