Algorithmic/automatic differentiation (AD) tools

Patrick Heimbach

MIT, EAPS, Cambridge, MA

Outline

1. Why should we / do we care?

2. Tools & challenges

Data assimilation / state & parameter estimation

Comprehensive sensitivity studies

► Finite difference approach:

- Take "guessed" anomaly (e.g.
 SST) and determine its impact on model output (ice export)
- Perturb each input element (SST(i, j)) to determine its impact on output (ice export).

Impact of *one input* on *all outputs*

Reverse/adjoint approach:

- Calculates "full" sensitivity field $\frac{\partial \text{ ice export}}{\partial \text{ SST}(x,y,t)}$
- Approach: Let

$$\mathcal{J} = \mathsf{export}, \, \vec{u} = \mathsf{SST}(i, j)$$

$$ightarrow \leftec{
abla}_{u} \mathcal{J}(ec{u})
ight. = rac{\partial \operatorname{ice export}}{\partial \operatorname{SST}(x,y,t)}$$

Sensitivity of one output to all inputs

adjoint approach

Non-normal transient amplification & predictability

Consider stable linear system

$$\frac{\mathrm{d}\,\vec{v}(t)}{\mathrm{d}\,t} = M\,\vec{v}(t), \quad \vec{v}(t) \to 0 \text{ for } t \to \infty$$

▶ If M is non-normal, $M \cdot M^T \neq M^T \cdot M$, non-orthogonal eigenvectors:

$$\vec{v}(t) = a_1 \, \vec{u_1} \, e^{\lambda_1 t} + a_2 \, \vec{u_2} \, e^{\lambda_2 t}$$

- If decay timescales very different, i.e. $\lambda_1 << \lambda_2 < 0$, then
 - $a_1 \vec{u_1} e^{\lambda_1 t}$ decays quickly, removing partial cancelation of EV's
 - ullet causing transient amplification for $t \approx 1$
 - leaving mostly $\vec{v}(t) \approx a_2 \vec{u_2} e^{\lambda_2 t} \to 0$ for $t \to \infty$.

Formal uncertainty characterization & quantification

Consider linear approx. of cost function

$$\mathcal{J}(\vec{u}) = \frac{1}{2} \left(\mathcal{M}(\vec{u}) - \vec{d} \right)^T W \left(\mathcal{M}(\vec{u}) - \vec{d} \right)^T$$

$$\approx \frac{1}{2} (\vec{u} - \vec{u}_0)^T \left(\frac{\partial \mathcal{M}}{\partial u} \right)^T W \left(\frac{\partial \mathcal{M}}{\partial u} \right) (\vec{u} - \vec{u})$$

Compare to multivariate Gaussian distribution

$$\mathcal{N}(\vec{u}_0, \Sigma) \propto \exp\left[(\vec{u} - \vec{u}_0)^T \Sigma^{-1} (\vec{u} - \vec{u}_0) \right]$$

▶ posterior error covariance matrix Σ is inverse of Hessian H of $\mathcal{J}(\vec{u})$ at minimum:

$$\mathcal{J}(\vec{u})$$

$$u_1$$

$$u_2$$

$$v_2 = \frac{1}{\lambda_2}$$

$$u_1$$

$$v_1 = \frac{1}{\lambda_1}$$

$$H = d_u^2 \mathcal{J}(\vec{u}_{opt})$$

$$= \left(\frac{\partial \mathcal{M}}{\partial u}\right)^T W\left(\frac{\partial \mathcal{M}}{\partial u}\right) + \left(\frac{\partial^2 \mathcal{M}_k}{\partial u_i \partial u_j}\right) W\left(\mathcal{M}(\vec{u}) - \vec{d}\right)$$

► Eigenvalues of *H*: principal curvatures

 $\frac{\text{largest EV}}{\text{smallest EV}} = \text{conditioning number}$

r_i: principal curvatures

• $\det(H^{-1})$: Gauss curvature

• trace (H^{-1}) : mean curvature

Some algebra

Need $\nabla_u \mathcal{J}|_{u_0}$ of $\mathcal{J}(\vec{u}_0) \in \mathbb{R}^1$ w.r.t. control variable $\vec{u} \in \mathbb{R}^m$

$$\mathcal{J}$$
 :

$$\vec{u}$$

$$\mapsto$$

$$\vec{u} \longmapsto \vec{v} = \mathcal{M}(\vec{u}) \longmapsto \mathcal{J}(\mathcal{M}(\vec{u}))$$

$$\mapsto$$

$$\mathcal{J}(\mathcal{M}(ec{u}))$$

$$TLM$$
:

$$\delta \vec{u}$$

$$\rightarrow$$

$$\delta \vec{v} = M \cdot \delta \vec{u}$$

$$\mapsto$$

$$TLM: \delta \vec{u} \mapsto \delta \vec{v} = M \cdot \delta \vec{u} \mapsto \delta \mathcal{J} = \vec{\nabla}_u \mathcal{J} \cdot \delta \vec{u} = 0$$

$$\Longrightarrow$$
 $ADM: \delta^* \vec{u} = \vec{\nabla}_u \mathcal{J}^T \longleftrightarrow \delta^* \vec{v}$

$$\leftarrow$$

$$\delta^* \vec{v}$$

$$\leftarrow$$

$$\delta \mathcal{J}$$

- $\vec{v} = \mathcal{M}(\vec{u})$ nonlinear model
- ullet M , M^T tangent linear (TLM) / adjoint (ADM)
- $\delta \vec{u}$, $\delta^* \vec{u}$ perturbation / dual (or sensitivity)

$$\vec{\nabla}_{u} \mathcal{J}^{T}|_{\vec{u}} = M^{T}|_{\vec{v}} \cdot \vec{\nabla_{v}} \mathcal{J}|_{\vec{v}}$$

$$TLM: \quad m \, (\sim n_x n_y n_z \,) \; {
m integrations} \quad @ \quad 1 \cdot \; (\# {
m forward})$$

$$@ 1 \cdot (\#forward)$$

integration @
$$\gamma$$
 · (#forward)

How to get an adjoint model?

hand-written adjoint

automatic differentiation

Adjoint code generation via Automatic / Algorithmic Differentiation (AD)

applied to the MITgcm code (100,000+ lines of code)

Nonlinear model code

► Adjoint model code

$$\vec{v} = \mathcal{M}_{\Lambda} \left(\mathcal{M}_{\Lambda-1} \left(\dots \left(\mathcal{M}_{0} \left(\vec{u} \right) \right) \right) \right) \quad \delta^{*} \vec{u} = M_{0}^{T} \cdot M_{1}^{T} \cdot \dots \cdot M_{\Lambda}^{T} \cdot \delta^{*} \vec{v}$$

Automatic differentiation:

Marotzke et al. JGR 1999

Stammer et al. JGR 2002

Heimbach et al. FGCS, 2005

each line of code is elementary operator \mathcal{M}_{λ}

- rules for differentiating elementary operations
- \longrightarrow yield elementary Jacobians M_{λ}
- \longrightarrow composition of M_{λ} 's according to chain rule
- \longrightarrow transpose M_{λ}^{T} gives adjoint yield full tangent linear / adjoint model
- Source-to-source AD tools:
 TAF (Giering & Kaminski, 1998), commercial
 OpenAD (Utke et al., 2008), open-source
 - model \mathcal{M} independent \vec{u}
 - ullet dependent ${\mathcal J}$

TAF, OpenAD

ADM M^T , or

Implementation options (L. Harscoet & K. Narayanan, pers. comm.)

Implementation-wise, several strategies may be available

Strategies differ in:

- efficiency of derivative code
- suitability for the sort of derivatives required
- ease of use
- tool development investment
- dependence on the application language

Options:

- Source-to-source transformation vs. operator overloading
- Diff. variables association-by-name vs. association-by-address
- Reverse retrieval by storage or by re-computation

Strengths & weaknesses (L. Harscoet & K. Narayanan, pers. comm.)

- operator overloading:
 - + few restrictions, flexibility, ease of coding language
 - adjoint tape size; interpreted => slower*3; overhead;
 source code preparation
- source-to-source transformation:
 - + smaller adjoint tape; global analyses; compiler optimizations => better efficiency / performance
 - lagging behind language features; development cost

Other aspects:

- assoc. by address: maintaining connection, locality
- assoc. by type: readability

Available AD tools:

http://autodiff.org

- Source-to-source transformation:
 - TAF/TAC++ (Germany, commercial) MITgcm (ocean & ice)
 - OpenAD/F & ADIC (Argonne NL, USA) MITgcm (ocean & ice)
 - Tapenade (INRIA, France)
- Operator overloading:
 - ADOL-C (Argonne NL, USA) Ice Sheet System Model (ISSM)
 - NAGware-95 (RWTH, Germany)

Shameless self-promotion:

- MITgcm/ECCO framework has been flagship application for AD
- can now be differentiated using both TAF and OpenAD
- both ocean GCM and ice sheet model differentiated

Significant national & international (e.g., UK, Germany, Norway, ...) interest in accessibility to open-source AD tools

OpenAD: an open-source algorithmic differentiation tool

http://www.mcs.anl.gov/OpenAD

Immediate needs:

Tool support at agency level for climate applications (esp. DOE)

Tool design emphases

- modularity
- flexibility
- use of open-source components
- new algorithmic approaches:
 - XML-based languageindependent transformation
 - basic block preaccumulation
 - other optimal elimination methods
 - control flow & call graph reversal
 - hierarchical checkpointing

(started with NSF-CMG & NASA support)

Conclusion

- Gradient information are powerful ingredients in climate research (DA, sensitivity, predictability, UQ, ...)
- can be efficiently obtained via adjoint model
- obtaining adjoint of full-fledged model is challenging
- algorithmic differentiation (AD) has proven feasible
 - is generating increasing interest in modeling community
- think of using AD tool like driving a Formula 1 car
 - requires skillful driver
 - highly tuned: tool improves with each new application
 - requires AD tool support
- strong desire for better access to (open-source) AD tools

Specific recommendation: increase *OpenAD* tool support at agency level for climate applications (esp. DOE)