Research Highlights

US CLIVAR aims to feature the latest research results from the community of scientists participating in our interagency-sponsored projects, working groups, panels, science teams, and workshops. Check out the collection of research highlights below and sort by topic on the right. 

Najibi, Devineni, and co-authors present a new idea defined as simultaneous heavy precipitation events (SHPEs) to quantify extreme regional precipitation considering the spatial structure of extreme events. Quantifying the characteristics of SHPEs and modeling their footprints can improve the projections of flood risk and understanding of damages to interconnected infrastructure systems.

In a recently published Geophysical Research Letters paper, Elipot demonstrates how a new ocean observing system for measuring local and global sea level changes could piggy-back on the existing array of freely drifting buoys.

In a recent article published in Geophysical Research Letters, researchers investigate the origins of the upper limb of the AMOC at 6°S, from different sections in the global ocean, by determining Lagrangian trajectories and tracing particles backward in time for 2,011 years.

A recent study by Song et al. discovered contrasting phase changes of the precipitation annual cycle between land and ocean under global warming, with land delay and ocean advance by examining simulations from 37 CMIP5 models and five large ensembles. They found that the seasonal delay of lands is mainly attributable to the increased effective heat capacity, while there exists a competing mechanism against the impact of increased capacity for the ocean precipitation.

Research by Toms et al. estimates how much impact the QBO has on the global teleconnection signature of the MJO. The authors use a spectral decomposition approach to quantify the relationships between the MJO and upper-tropospheric geopotential separately for each season of the year and for westerly and easterly QBO phases. Similar to previous studies, the results suggest that the MJO is related to upper-tropospheric geopotential anomalies across the globe. The novel contribution of the results lies in the analysis of the impacts of the QBO.