News & Publications

Research Highlights

US CLIVAR aims to feature the latest research results from the community of scientists participating in our interagency-sponsored projects, working groups, panels, science teams, and workshops. Check out the collection of research highlights below and sort by topic on the right. 

Prediction uncertainty associated with model simulations of an ice-free Arctic
August 29, 2016

New research focused on determining how well the occurrence of an ice-free Arctic can be predicted. What the researchers found is that the uncertainty for the prediction of an ice-free Arctic, caused by internal climate variability, amounts to around two decades.

Currents and rainfall around Florida
August 10, 2016

Robust surface ocean currents around Peninsular Florida, namely the Loop and the Florida Currents, are shown to affect the terrestrial wet season of Peninsular Florida. New research shows that differences in the ocean bathymetry (or topography) of two novel numerical climate model integrations can influence the ocean currents and their impact on regional climate.

Sea ice thickness
July 13, 2016

Recent trends in sea ice have been studied heavily. A less well-understood problem is how sea ice affects the underlying ocean, particularly the poorly observed Southern Ocean. A new study, published in the journal Nature Geoscience, shows how the seasonal drift of Antarctic sea ice may be more important for the global ocean overturning circulation than previously realized.

Model showing lag correlations with temperature
July 8, 2016

The Atlantic Multidecadal Oscillation (AMO) is a naturally occurring pattern of sea surface temperature change that is seen in the North Atlantic Ocean on decadal timescales and affects weather and climate. Some have suggested that the AMO is a consequence of variable large-scale ocean circulation. Yet new research by Clement and coauthors suggest otherwise.

Ocean models for the AMO index
June 28, 2016

In a recent technical comment, Zhang et al. show that ocean dynamics play a central role in the Atlantic Multidecadal Oscillation (AMO), and the previous claims that “the AMO is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing, and ocean circulation changes have no role in causing the AMO” are not justified.

Pages